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Introduction

Mineral cement is the most important intrinsic 
factor in estimating erosion rates in sandstone 
regions. Its composition is a function of mineral 
availability in the basin and burial/thermal history 
of the basin. Post-depositional tectonic se� ing of 
particular segments of the basin may then control 
cement distribution, especially through diff er-
ential fl uid circulation. Most cemented sandstones 
are relatively resistant to weathering in outcrops, 
giving rise to a variety of forms of positive relief. 
In the subsurface, however, where fl ushing rate is 
higher, silica and carbonate cements get readily 
dissolved producing large volumes of easily 
eroded loose sand. Impressive solutional forms 
in quartzite can be observed in tropical (Chalcra�  
& Pye 1984), subtropical (Busche & Erbe 1987) as 
well as temperate (Ba� iau-Queney 1984) climatic 
zones, and quartz dissolution is considered a 
process playing a major role in the karstifi cation 
of even weakly cemented quartzose sandstones 
worldwide (Wray 1997).

Silica cement

The very low solubilities of quartz at normal pH 
and temperature (~5 ppm) rapidly increase with 
increasing pH values, especially above the pH of 
9.83 which corresponds to the fi rst dissociation 
constant of silicic acid (Eby 2004), reaching values 
of >20 ppm at pH 10 and 25 °C. Comparable 
solubilities of quartz can be also achieved by rising 
temperature: at normal pH, 20 ppm SiO2(quartz) 
dissolve at temperatures of around 50 °C. Solubil-
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ities of cryptocrystalline and amorphous silica are 
by one order of magnitude higher than those of 
crystalline quartz. Laboratory experiments are 
consistent with observations from deeply buried 

sandstones where secondary quartz overgrowths 
typically appear on detrital quartz grains at 
depths of over 1 km and temperatures of over 
40 °C (McBride 1989). The main source of diage-
netic silica is pressure solution at grain contacts 
and stylolites, and conversion of primary clay 
minerals due to sediment burial.
Where rapid silica precipitation takes place, 
chalcedony and opal are the dominant phases. 
This is the case of hydrothermally mobilized SiO2
in areas of siliceous hot springs (Guidry & Chafetz 
2003) or near contacts of sandstone with volcanic 
bodies.
A wide range of silica phases are present in 
silcretes, products of surface and near-surface 
diagenesis generally conforming to surface topo-
graphy and formed either within a weathering 
profi le or at stable groundwater levels. Silica 
mobilization in such se� ings (normal pH and 
low temperatures) is explained by high fl ushing 
rates over a prolonged time. The best known 
silcrete examples in Europe are the Fontainebleau 
sandstone in France (Thiry et al. 1988) and the 
sarsen and puddingstone sandstones of southern 
England (Hepworth 1998).

Carbonate cement

Unlike silica, carbonates can be transported in 
solutions of low pH and low temperature. Calcite, 
dolomite and siderite cements generally form 
patchy, strata-bound bodies in the sandstone, or 
isolated concretions. CaCO3 is mostly derived from 
shells and skeletal remains of fossil organisms, or is 
precipitated directly from pore waters. Carbonate 
cement is of early diagenetic origin, and its preci-
pitation predates deeper sediment burial.
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Ferruginous cement
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Cementation and permeability
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Cementation and morphology
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Les ciments siliceux, ferrugineux et de carbonate sont 
les constituants secondaires les plus communs des grès, 
remplissant souvent complètement tous les espaces 
intergranulaires. La présence du ciment minéral rend 
nécessaire, d’une part, une source interne ou externe au 
bassin sédimentaire des éléments requis, d’autre part, 
la mobilisation des fl uides de chimisme appropriée, du 
pH, et de la température pour transporter ces éléments. 
Et en fi nal, rend nécessaire, la mise en place des condi-
tions physico-chimiques dans la fenêtre de stabilité des 
minéraux de cimentage particuliers au bassin sédimen-
taire.

La variété des ciments minéraux dans les grès est une 
fonction du chimisme du fond du bassin, de la présence 
de corps intrusifs et extrusifs à proximité du bassin, et 
de l’histoire tectonique du bassin, particulièrement la 
profondeur d’enfouissement du sédiment.

Après enfouissement profond (à des profondeurs 
supérieures à 2,5 km), les minéraux primaires d’argile 
de même que les grains détritiques de quartz sont 
modifi és en silice mobile. La précipitation de ce� e silice, 
la plupart du temps sous forme de croissance syntaxial 
de quartz sur des grains de quartz eux-mêmes peut 
mener à la diminution importante de porosité sur de 
grands volumes de grès enfouis. Une faible dissolution 
du quartz, se produit même à des températures et des 
pressions beaucoup plus basses, comme mis en évidence 
par la silicifi cation de grès le long des corps des roches 
volcaniques alcalines et par des exemples multiples de 
karst de quartzite partout dans le monde. Le ciment de 
carbonate a la plupart du temps une provenance interne 
au bassin, dérivé des coquilles de mollusque mises en 
solution lors des premières étapes de la diagenèse du 

sédiment. Les sources du fer pour le ciment ferrugineux 
peuvent être multiples, s’étendant des minéraux détri-
tiques riches en fer présents dans le bassin aux roches 
encaissantes mafi ques (foncées).

Comme la distribution du ciment est commandée par 
le fl ux de fl uide dans le bassin, les corps concrétionnés 
ou en forme de feuillet du grès cimenté tendent à être 
allongés parallèlement au paléofl ux des eaux souter-
raines et sont souvent accueillis par des zones de faille 
ou de fracture de haute perméabilité. Le ciment précoce 
réduit la porosité du grès, et de ce fait, limite les mouve-
ments de liquide dans le bassin en soutenant une modifi -
cation du compartimentage hydraulique.

Les grès cimentés sont généralement plus résistants à 
l’altération et forment des reliefs positifs. Les formes de 
relief de ces cémentation induites sont de diverses tailles, 
depuis des plateaux et des ‘montagne-table’, arêtes et 
murs, rebords de roche en forme de champignons, de 
bouton et de tube comme autant de fi nes sculptures dans 
les murs de roche. Beaucoup de formes de relief dans les 
grès silicifi és ont été dessinées par la dissolution de silice 
et partagent le caractère des formes de karst des roches 
carbonatées.

Les principes donnés peuvent être illustrés par des 
exemples de, par exemple, des paysages tempérés de la 
République Tchèque et de l’Angleterre ou des paysages 
arides du sud-ouest américain.

Ce� e recherche fut menée dans le cadre du projet 
A3013302 de l’offi  ce des subsides de l’Académie des 
sciences de la République Tchèque.
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